The spectral impact on various PV materials –amorphous silicon (a-Si), CdTe, CIGS, single crystalline silicon (sc-Si) and multi crystalline (mc-Si)– in two nearby cities of Southeastern Brazil is presented. For every PV technology studied, the values of the spectral mismatch factor on instantaneous, monthly and annual basis were computed by means of spectra recorded over a 12-month experimental campaign carried out in São Paulo and São José dos Campos. A blue-biased however seasonal spectrum prevails in both cities, which leads to annual spectral gains of up to around 6% and 2% exhibited by a-Si and CdTe, respectively. On the other hand, CIGS, sc-Si and mc-Si show negligible annual gains that lie between around −1% and 0%. These results are well aligned with previous findings obtained using both experimental and modelled spectra in other low-latitude sites with tropical climate. Consequently, spectral effects cannot be ignored in such sites, especially when modelling the outdoor behavior of larger bandgap PV devices. Last, a quasi-linear relationship exists between the monthly average photon energy and the monthly spectral mismatch factor for all the PV materials under scrutiny. This conclusion is in good agreement with previous works carried out in mid-latitude sites.

Renewable Energy Vol 164

Guilherme Neves, Waldeir Vilela, Enio Pereira, Marcia Yamasoe, Gustavo Nofuentes

Link de Acesso: 

https://www.sciencedirect.com/science/article/abs/pii/S0960148120317006